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AN INVESTIGATION OF THE RELATIONSHIP BETWEEN ENCODER 

DIFFERENCE AND THERMO-ELASTIC MACHINE TOOL DEFORMATION 

New approaches, using machine learning to model the thermo-elastic machine tool error, often rely on machine 

internal data, like axis speed or axis position as input data, which have a delayed relation to the thermo-elastic 

error. Since there is no direct relation to the thermo-elastic error, this can lead to an increased computation 

inaccuracy of the model or the need for expensive sensor equipment for additional input data. The encoder 

difference is easy to obtain and has a direct relationship with the thermo-elastic error and therefore has a high 

potential to improve the accuracy thermo-elastic error models. This paper first investigates causes of the encoder 

difference and its relationship with the thermo-elastic error. Afterwards, the model is presented, which uses the 

encoder difference to compute the thermo-elastic error. Due to the complexity of the relationship, it is necessary, 

to use a machine learning approach for this. To conclude, the potential of the encoder difference as an input of the 

model is evaluated.  

1. INTRODUCTION 

There is an ongoing trend in the machine tool industry for more productive machine 

tools and higher workpiece quality, while reducing the environmental machine footprint [1]. 

In order to comply to the increasing demand for high accuracy machine tools, manufacturers 

are driven to decrease any error influences impacting the machining accuracy. One of the 

largest errors influencing the machine tool accuracy is the thermo-elastic error. When  

a machine is in operation, internal and external heat sources lead to a transient heat flux in  

the machine tool structure, which results in a deformation of the structure and a displacement 

of the Tool Center Point (TCP) and thus a machining error. To investigate the machine tool 

behaviour, trials are conducted using heat pads as an external heat source with a controlled 

heat flux position, axis motion as an internal heat source resulting in a heat flux similar to the 

real working conditions of a machine tool, and daily changes in ambient temperature. 
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2. THERMO-ELASTIC ERROR 

A lot of research has already been conducted on thermo-elastic TCP errors. An overview 

of recent research is presented by Gao et al. [2]. The research can be clustered into approaches 

focussing on compensation and correction of the thermo-elastic error. Compensation 

approaches target the cause of the error by reducing the heat flux in the machine tool structure. 

This can be done by cooling the structural components [3, 4]. Compensation approaches show 

reliable results and have proven to reduce the thermo-elastic error effectively. However, they 

are energy intensive, which is not compatible with the effort to reduce resource and energy 

consumption. Error correction methods use models to compute the thermo-elastic error at  

the TCP and correct it using the machine control, which does not need additional energy.  

The correction approaches used can be clustered into white box [5], gray box [6] and black 

box [7–10] models with each having its own advantages and disadvantages in specific use 

cases. Apart from the model type used, all models need input data. The type of input data 

needed has a direct effect on the usability of the model. Therefore, the input data needs to be 

easy to obtain (availability), reliable to measure (reliability) and there should be a strong 

dependency between the data and the thermo-elastic error (correlation). An overview of 

commonly used input data and an evaluation of the three given criteria is shown in Table 1. 

Table 1. Typical input data for thermo-elastic error models 

data axis speed axis position motor current 
structural 

temp. 

cooling fluid 

temp. 
ambient temp. 

availability ++ ++ ++ o + - 

reliability ++ ++ ++ + + o 

correlation o - o + + o 

 

Machine internal data like the axis speed or position is easily available and very reliable. 

However, there is only a delayed dependency to the thermo-elastic error, thus reducing the 

usability in a model [11, 12]. Data from external sensors like temperature sensors have a good 

and direct dependency to the thermo-elastic error, but they are prone to errors and have  

a higher effort regarding installation and maintenance [9]. In the literature, there is no input 

data used, which is good in all categories. Previous studies have found the encoder difference 

to constitute such a value with high availability, reliability and correlation to the thermo-

elastic error. This encoder difference therefore has the potential to increase the applicability 

of a model in practical use drastically. The sources of the encoder difference and its 

dependency to the thermo-elastic TCP error are described in the following section. 

3. ENCODER DIFFERENCE 

Typically, there are two encoders in a machine tool linear axis: A linear encoder 

measuring the position directly at the axis and a rotary encoder measuring the rotary position 

of the axis motor, thus measuring the axis position indirectly. The axis position is therefore 
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measured redundantly, with both measurements being available in the machine control.  

The difference between these two measurements is called encoder difference. Current 

research investigating the encoder difference is very limited and in general not aimed at 

establishing a dependency to the thermo-elastic error.  

The company Heidenhain investigates, how the encoder difference develops over time 

when the machine is under constant load with an average movement speed of 10 m/min at 

three machine poses for a fixed / floating ball screw configuration. The encoder difference 

was only measured during stand still of the axis. They find that the encoder difference 

increases over time. As expected, the encoder difference increases more for positions further 

from the fixed bearing than for positions close to the fixed bearing [13].  

Wang et al. reach similar results in their investigation [14]. An analysis of the encoder 

difference depending on the axis position and the time shows a dependence between the 

encoder difference and the thermo-elastic machine state. Furthermore, a small periodic error 

can be seen which is repeated for every turn of the ball screw. Xi et al. investigate the 

behaviour of the encoder difference depending on the process forces on the TCP [15]. The 

experiments show a linear behaviour between the force measured at the TCP and the encoder 

difference, with a stiffness of roughly 175 N/µm.  

Figure 1 (left) shows further influences on the encoder difference. Production errors in 

the ball screw, like for example a pitch error, can lead to a difference between the position 

measurements. Forces acting on the axis components like process forces, acceleration and 

friction lead to a mechanical deformation of axis components depending on the stiffness. 

Lastly, the thermal state of the components close to the machine axis has an influence on the 

encoder difference.  

 

Fig. 1. left: influences on the encoder difference; right: sketch of a machine axis  

Figure 1 (right) shows the axis components and the influence of component deforma-

tions on the encoder difference. The geometry of the components marked with “thermal 

distance” defines the encoder difference. Any deformation of these components will influence 

the encoder difference. Deformations may occur due to a change in component temperature. 

However, it is evident, that only deformations in the machine bed, machine frame or the linear 

encoder lead to a TCP displacement. A deformation of the ball screw leads to a change in 
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motor position but will not affect the position of the frame, since this is defined by the scan-

ning head of the linear encoder.  

The aim of this paper is a detailed investigation of the encoder difference and its 

connection to the component deformation close to the axis. Therefore, a series of loads is put 

on the machine and the resulting encoder difference and axis deformation is measured.  

The setup of these experiments is described in the following section. 

4. MEASUREMENTS ON THE MACHINE 

To investigate the machine tool behaviour close to the axis, the X axis of a stand milling 

machine with two working areas is equipped with temperature sensors and distance sensors 

as shown in Fig. 1. The machine axes length are: X = 2000 mm, Y = 840 mm and Z = 550 mm. 

Each working area has a table with two rotary axes in A and C direction. To measure the 

temperature, PT100 elements are used. For the displacements, linear variable differential 

transformers (LVDT) are mounted on the machine using Invar rods which do not deform with 

changing material temperature. The distances dbed are measured using the measurement 

principle introduced by Brecher et al. [16]. 

5. INVESTIGATIONS 

5.1. SELECTIVE LOAD USING HEATING PADS 

 For a first analysis of the machine behaviour, the machine is not moved and the structure 

and ambient temperature as well as the structure deformation are measured according to the 

measurement setup presented in Section 4. Additionally, the TCP displacement is measured 

using an environmental temperature variation error test (ETVE test) [17]. External thermal 

load is applied using heating pads (comp. Fig. 1). First, the left heating pad is activated for 

12 h. After this, it is turned off and after another 12 h period, the right heating pad is activated 

for 12 h. The measured results are shown in Fig. 2. 

 

Fig. 2. left: encoder difference and measured displacements at the TCP and machine bed during external load using 

heating pads; right: machine structure and ambient temperature 
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During the heat up phases using the pads, the corresponding sections of the machine bed 

heat up and expand by 18 µm on the left side and 24 µm on the right side. The encoder 

difference however changes by maximally 5 µm. This shows, that when the heat flux is 

applied on a very specific point at the machine structure, multiple structure components close 

to the axis heat up resulting in a complex deformation of the axis components. This is reflected 

in the recorded temperatures on the structure components (comp. Fig. 2 – right). Therefore, 

in this observed case, the encoder difference does not show a suitable behaviour to detect 

changes in the TCP position. 

5.2. INTERNAL THERMAL LOAD 

To investigate the machine behaviour under internal thermal loads, a machine 

movement according to Fig. 3 is run on the machine. The X axis of the investigated machine 

is driven between the positions X = –1935 mm and X = –1765 mm at constant speeds for 12 h 

with cooling phases in between lasting 12 h as well. The speed is altered in four steps between 

v1 = 175 mms-1 and v4 = 106 mms-1. 

 

Fig. 3. measurement cycle of the encoder difference 

During the whole experiment, every five minutes a measurement cycle is conducted by 

the machine, where all axes are driven with a constant speed over their complete length.  

The encoder difference of all axes is evaluated at ten positions. Figure 4 shows the machine 

structure temperature (left) and the encoder difference of the X axis (right) during  

the experiment. The data was recorded with the measurement setup presented in Section 4. 

Figure 4 shows the expected temperature rise during the heat up phase and temperature 

fall during the cool down phases. The time constants of the machine components vary as 

expected. The encoder difference of the X axis follows the trend seen in the temperatures. It 

can be seen, that the change in encoder difference is smaller for positions closer to the fixed 

bearing than for positions further from it, which is consistent with the findings from 

Heidenhain [13]. The reason for this is the large influence of the ball screw. The balls screw 

contributes the most to the change in encoder difference, since it heats up the most.  

Even though only the X axis is moved in the trials, the Y and Z axis also see a change in 

encoder difference. This is shown in Fig. 5 (left). Since the Z axis is geometrically furthest 

from the X axis, where the heat flows into the machine structure, the encoder difference of 

the Z axis is the smallest. 
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Fig. 4. left: machine structure temperature; right: encoder difference of the X axis 

The encoder difference of the Y axis however shows a significant delay element 

behaviour as well. 

 

Fig. 5. left: encoder difference for all linear axes close to their fixed bearing; right: axis current evaluated at three 

positions during constant speed 

Furthermore, the change in motor torque for constant movement of the X axis during 

measurement cycles is evaluated at three positions by assessing the motor current (Fig. 5 – 

right). It can be assumed that the current is proportional to the torque of the axis [15]. 

Consistent with the research of Wang et al., the trial in this paper shows a decreasing torque 

with time during machine load [14]. The reason for this is a change in the fit between the ball 
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viscosity of the lubricant. The presented trial shows, that the current follows a low order delay 

element behaviour. The amplification of the delay elements seems to be independent of the 

axis speed. Depending on the position of the measurement, the current shows an offset. This 

may be attributed to production tolerances regarding the fit between the ball screw and the 

nut. The result shows, that the current measured carries an information about the thermo-

elastic machine state and can therefore be used as an input parameter for a model computing 

the thermo-elastic TCP displacement. In Fig. 6, the amplification factor K of all three axes 

encoder differences is evaluated over the machine pose for different speeds. 

The amplification factor K of the X axis shows significant changes depending on the 

axis speed. The encoder difference of the X axis has the largest amplification factor for all 

measurement positions. The amplification factor of the X axis shows a progressive trend for 
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1960 mm (compare Fig. 3). Due to the friction of the ball screw nut the ball screw temperature 

is higher in this area, resulting in a larger elongation and thus a higher resulting amplification 

factor of the encoder difference. Since the fixed bearing is at the 0 mm position, this part  

of the bearing shows a smaller displacement.  

 

Fig. 6. Evaluation of the amplification factor K of the encoder difference 

To generate an overview of the dependency between the position of the heat up, and the 

encoder difference, the experiment is repeated at the same speeds for varying heat up 

positions. Table 2 shows the positions between which the machine is driven to put a thermal 

load on the machine.  

Table 2. Minimum and maximum position of the machine warm up for all experiments 

experiment number 
left working area right working area 

1 2 3 4 5 6 7 8 

maximum position 385 385 300 215 1935 1935 1850 1765 

minimum position 45 215 130 45 1595 1765 1680 1595 

       all data in mm 

The result is shown in Fig. 7. It can be seen, that the position of the heat up cycle 

influences the encoder difference amplification factor distribution over the measurement 

positions. This means, that the current encoder difference distribution does contain an infor-

mation about the historic energy input position in the machine tool, thus rendering the input 

valuable for a model to determine the TCP position. 

 

Fig. 7. Amplification factor of the encoder difference for all measurements dependent on the measurement position at 
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6. EXTERNAL LOADS 

The previous section shows, that the encoder difference is a good indicator for the 

current machine state, regarding internal loads. External thermal loads like a changing 

ambient temperature induce thermal distortions in the machine as well. To investigate the 

effect of the changing ambient temperature, the machine is not moved for eight days while 

the ambient temperature fluctuates (compare Fig. 8 – right). The TCP displacement is 

measured using an ETVE test [17]. The encoder difference, structure and ambient temperature 

as well as the TCP and structure displacement are recorded. The result of this test is shown in 

Fig. 8 (left).  

 

Fig. 8. left: encoder difference and measured displacements at the TCP and machine bed during external load by 

changing environment temperature; right: machine structure and ambient temperature 

During the experiment, the ambient temperature changes by 1.5°C. This results in  

a change in bed temperature of about 1.0°C and a change in bed deformation of up to 7.5 µm. 

The bed deformation behaves very similarly to the displacement of the TCP position in 

X direction and is qualitatively reflected by the encoder difference. However, the encoder 

difference has a maximum deviation of around 4 µm. This shows that there is a qualitative 

relationship between the encoder difference and the thermo-elastic machine state based on 

ambient temperature.  

7. MODELLING THE TCP DISPLACEMENT 

To quantify the benefit of using the encoder difference, a model is built that estimates 

the TCP displacement. Machine learning approaches have proven to be very accurate for 

complex models while still being fast in computation time. Therefore a machine learning 

approach is chosen is this paper. Many published approaches model the TCP displacement 

efficiently using machine learning tools. Most of these approaches use temperatures measured 

by external sensors to model TCP displacement, as can be seen in the work of Liu et al. [10]. 

The types of models used vary widely. Backpropagation networks as used by Ma et al. [18], 

ant colony algorithm based backpropagation networks as used by Guo et al. [9], feedforward 

networks as used by Chen et al. [19], fuzzy ARTMAP networks as used by Mize et al. [20] 
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and many other types of networks can be found in the literature to model the TCP 

displacement of a machine tool. Because the studies are performed on fundamentally different 

machines, it is not possible to compare the approaches and define a superior model. However, 

a reoccurring model type in the literature is a Long Short Term Memory (LSTM) network to 

model TCP displacement. LSTM networks were first introduced by Hochreiter et al. [21] and 

are the most basic type of network that is able to “memorize” data from previous time steps. 

This is important for modelling the delayed dependency between inputs and TCP 

displacement described in Section 2. Therefore, this type of network is used in this paper to 

model TCP displacement. An occlusion sensitivity analysis is performed to evaluate which 

input values have the greatest impact on the accuracy of the TCP displacement calculation. 

The test is replicated using a commonly used backpropagation network. This type of network 

is not able to store data. If the backpropagation network also delivers good results, it can be 

deducted, that the input data shows a good and direct correlation to the thermos-elastic 

machine tool error. Figure 9 shows the model architectures used. 

 

Fig. 9. LSTM and BP network model for computing the TCP displacement 

To train the network a new data set is generated. This data set is supposed to resemble 

the machine movements in an industrial application. To do this the machine is driven for 

355 h following randomly generated shapes like holes which are commonly used during 

machining of real parts. These shapes are shown in Fig. 10 (left). 

 

Fig. 10. left: TCP path for the generation of the data set; right: ETVE test 
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The speed of the machine tool is varied randomly as well as the geometric dimensions 

and positions of the shapes. The TCP displacement is measured at five minute intervals using 

an ETVE test [17] (Fig. 10 – right). While the TCP displacement is being measured, the 

machine is stopped for 5 seconds. During this standstill, the encoder difference is also 

measured for all axes. For the intervals between measurements, the motion, the average axis 

position and the motor current are calculated. The range of motion is the difference between 

the maximum and minimum position in the interval. The motor current is calculated as the 

average absolute motor current of the traced values. 

The first 80% of a 335 h data set is used to train the network and the last 20% are used 

for validation. Figure 11 shows the result of the LSTM and BP networks using all input data. 

An occlusion sensitivity analysis is performed. In an occlusion analysis, specific inputs are 

not used in the training of the networks. The resulting change in the RSME of the network is 

compared with the RSME of the network using all data. The larger the increase in comparison 

to the network using all data is, the more important is the occluded value. For each network, 

the result of the calculated TCP displacement in the Z direction using all data is shown. The 

Z direction is the direction with the largest total TCP displacement. 

 

Fig. 11. Results for computing the TCP displacement using the LSTM and the BP networks 
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overall result of TCP displacement. However, the RMSE increases with the occlusion of any 

input data, showing that all input data contribute to the overall result. A similar result can be 

seen for the other TCP displacement directions.  

The BP network, however, produces different results. The overall error generated by the 

BP network is significantly larger. The occlusion sensitivity analysis does not demonstrate  

a dominant shift in the RMSE as a function of the input variables. This implies that  

the network is unable to accurately predict TCP displacement. It can be concluded that the 

encoder difference does not have a sufficient direct relationship to the current thermal 

machine state to model the TCP displacement without considering the delay of the TCP 

displacement. However, the machine-internal data contains sufficient information to model 

the TCP displacement considering the delayed relationship. 

8. SUMMARY AND OUTLOOK 

Several experiments were conducted to investigate the relationship between the thermo-

elastic deformation of the machine structure and the encoder difference on a upright milling 

machine with two working spaces. The trials were conducted using heat pads as an external 

heat source with a controlled heat flux position, axis motion as an internal heat source 

resulting in a heat flux similar to the real working conditions of a machine tool, and daily 

changes in ambient temperature. 

The experiments show a dependency between the encoder difference and the TCP 

displacement under various operating conditions. The dependency appears to be complex, 

which means that it cannot be used in a white box model to calculate the thermo-elastic TCP 

error. However, the encoder difference can be used as an additional input in black box models 

with the potential to significantly improve the accuracy of the thermo-elastic TCP error 

calculation.  

In addition, simple black-box models that compute the TCP displacement have been 

developed. The LSTM model shows the best prediction accuracy. By performing an occlusion 

analysis, it is shown that the encoder difference is the input in the neural network that has the 

greatest influence on the prediction accuracy.  

The shown results reflect the high potential of the encoder difference as an input 

dimension for models calculating the thermo-elastic TCP displacement of machine tools. 

However, a drawback of the model is the large training data set required. Further research 

should focus on the relationship between the size of the training data set and the prediction 

accuracy, as well as approaches to reduce the size of the training data set, such as transfer 

learning. 
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